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National Aeronautics and Space Administration 
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INTRODUCTION 

Future interplanetary probes or  space s ta t ions may require precise 

temperature control f o r  several years or  longer. 

instrumentation or op t ica l  systems may require the ambient temperature t o  

be within the range 15O t o  25' C (60' t o  78' F) f o r  the length of the mission 

( r e f .  1). 

environment on the temperature control surfaces of a vehicle.  

For example, precision 

Such requirements demand a knowledge of the e f fec t  of the spa t i a l  

The thermal equilibrium of a surface i n  the spatial environment is  

primarily dependent upon a radiative energy balance between the surface and 

i ts  environment. 

t h i s  energy balance i s  related t o  the absorptance and emittance of the 

vehicle sukace .  The surface temperature of the vehicle var ies  as the  

f o k h  root of the u/6 r a t io .  It is, therefore,  necessary t o  evaluate 

According t o  the l a w s  of radiation energy t ransfer  ( r e f .  2),  

a2nz c k q p  m . t . i ~  c ~ i i ~ . p d  by t.hp spnt.fn_l ecvi-lnraent. in nrcpr t . ~  

properly design the thermal control of any vehicle. 

The emittance and absorptance of a surface are  strongly dependent on the 

f i n i s h  of t ha t  surface and, thus, could be al tered by the environment. 

component of t h i s  environment of concern i s  high-energy par t ic les .  

pa r t i c l e s  can bombard a space vehicle and cause the eject ion of surface 

atoms. 

One 

These 

This e ject ion is  commonly called sputtering. According t o  reference 3,  
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sputtering can change the opt ica l  properties of a metallic surface. 

as indicated in t h i s  reference, there is a lack of quantitative i n f o m t i o n  

in t h i s  f ie ld .  

evaluate the  change in t o t a l  hemispherical emittance and solar absorptance of 

some engineering metals. 

However, 

This lack of information led t o  an experimental program t o  

MATERIALS 

Three materials were selected f o r  test:  titanium al loy containing 

6-percent ahunimxn and 4-percent vanaiiium, 99.99-percent pure aluminum, and 

e lec t ro ly t ic  copper. 

sidered t o  be representative of s t ructural  materials. 

These materials were selected because they are con- 

EQUIPMENT 

The tes t  equipment consisted of a sputtering apparatus, an integrating 

sphere reflectometer, and an emittance-measuring apparatus. 

Sputtering Apparatus 

The principle of cathode sputtering was used t o  bombard the metallic 

specimens with normally incident ions of hydrogen gas at an energy leve l  of 

1000 electron vol t s .  

pump was used t o  evacuate a 5-inch be l l  jar t o  a background pressure of 

1XLO-6 t o r r .  

b e l l  jar and was the  negative electrode or  ta rge t .  

provided a reference potent ia l  and a l so  shielded the  ta rge t  from the ion 

sheath. The specimen mount had the necessary piping and seals t o  allow the 

circulat ion of cooling air  a t  room temperature and pressure on the in te r ior  

surface of the specimen. 

A vacuum system with a 4-inch-diameter o i l  diffusion 

A hollow cylinder specimen was located in the center of the  

A grid around the ta rge t  
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Hydrogen gas was bled into the b e l l  jax and w a s  ionized by a single side- 

band, radio frequency t ransmit ter .  This transmitter w a s  operated i n  a 

continuous wave mode and supplied power t o  a resonant c i r cu i t  at  28 mcps. 

ion accelerating potent ia l  was supplied by an external d i rec t  -current power 

supply s e t  a t  1000 vo l t s .  This type of sputtering apparatus i s  capable of 

producing an ion current of about 1 ma/cm2. 

apparatus is given i n  r e f .  3 ) .  

The 

(A complete description of t h i s  

lntegrating Sphere Reflectometer 

The reflectance of the specimens w a s  measured i n  an integrating sphere 

reflectometer. 

cycles per second and directed into the entrance s l i t  of a Perkin-Elmer 

Model 98 Monochrometer. 

monochrometer e x i t  port w a s  directed through the  sphere entrance por t .  

energy w a s  incident upon the specimen, and then ref lected onto the  sphere 

w a l l .  

2 mm of smoked magnesium oxide because of i t s  high reflectance at  the wave 

lengths of i n t e re s t .  Photomultiplier and lead sulfide detectors were located 

on the sphere w a l l  t o  detect  the intensi ty  of wall illumination. 

in tens i ty  was then used t o  determine the  specimen reflectance.  

Energy from a tungsten or  hydrogen lamp w a s  chopped a t  13 

The chopped monochromatic energy emerging from the 

This 

This w a l l  and a l l  exposed pa r t s  of the  specimen holder were coated with 

This 

Emittance-Measuring Apparatus 

The emittance-measuring apparatus employed the calorimetric technique 

whereby the t o t a l  hemispherical emittance of a body was determined from the 

steady-state radiative heat f l o w  from tha t  body t o  another completely enclosing 

body. 
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The en t i r e  cold-wall enclosure and specimen assembly were contained within 

a standard 18-inch b e l l  j a r .  

which u t i l i zed  a 4-inch-diameter o i l  diffusion pump, a mechanical pump, and 

liquid-nitrogen-cooled baff les  . The in te r ior  of the  cold-wall enclosure w a s  

f irst  sandblasted and then sprayed with three coats of black sicon paint .  A 

liquid-nitrogen cooling c o i l  w a s  soldered t o  the outside of the enclosure. 

The chamber w a s  evacuated by a vacuum system 

The t e s t  specimen w a s  heated w i t h  an in te rna l  e l e c t r i c a l  heater element. 

The current and voltage measurements required t o  evaluate the power input 

were made with the aid of a potentiometer and standard res i s tors .  

The specimn w a s  suspended within the cold w a l l  by the  specimen heater 

power leads. 

they were clamped i n  a guard heater at the point where they passed through 

the cold-wall enclosure. A more complete description of the  emittance 

a2paratus i s  given i n  reference 3. 

To minimize the heat conduction losses along these power leads, 

TEST PROCEDURE 

The procedures f o r  sputtering the  specimens and f o r  determining t h e i r  

emittances and absorptances were essent ia l ly  the same f o r  a l l  materials.  

The experimental program w a s  run i n  two separate parts. F i r s t ,  the  change 

i n  emittance w a s  measured as a function of the amount of s -u t t e r ing .  

specimen was then repolished, the t e s t  was repeated, and the solar absorptance 

w a s  measured. 

The 

The initial step, in each part ,  w a s  t o  determine the emittance o r  

absorptance f o r  the polished surface. Photomicrographs were taken and the 

specimen was weighed. 

of sputtering. After each period, the specimen w a s  again weighed, 

Then the specimen was subjected t o  several periods 
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photomicrographs were made, and the t o t a l  hemispherical emittance o r  solar  

absorptance w a s  measured. 

about 1021 ions/cm2 had bombarded each specimen. 

This procedure w a s  a r b i t r a r i l y  continued u n t i l  

Sputtering Procedure 

After a specimen had been instal led in the sputtering apparatus, the 

system w a s  evacuated and purged with hydrogen f o r  a period of 5 minutes. 

The hydrogen flow ra te  was then reduced t o  obtain the operating pressure of 

0.01 t o r r .  

and by applying the negative 1000 vo l t  potent ia l  t o  the specimen. 

f ie ld  strength and the  ion acceleration poten t ia l  were maintained as constant 

as possible f o r  a l l  tests. 

a i r  was circulated through the inter ior  of the model while it was being 

sputtered. 

Sputtering was in i t ia ted  by ionizing the gas with R-F exci ta t ion 

The R-F 

To maintain the specimen temperature below 250' F, 

Reflectance -Measuring Procedure 

Reflectance measurements were made at  50 points i n  the wave-length region 

of 0.3 t o  3 . 0 ~ .  Each point represented the reflectance f o r  a 2-pei.ceiit 

increment of the solar spectrum outside the ear th ' s  atmosphere. 

wave length and sl i t  width w a s  set on the monochrometer t o  obtain each data  

point .  

sphere wall, the  recorder was adjusted t o  read 100 percent. 

then moved t o  bring the  specimen in to  the opt ica l  path. 

recorder reading represented the specimen reflectance at  the se t  wave length. 

Since absorptance equals one minus reflectance at  any specif ic  wave length, 

t h e  absorptance is then eas i ly  calculated. Integration of these values 

over the  sol= wave-length range produces the solar absorptance. 

The desired 

With the opt ica l  beam incident on a selected reference area of the 

The sphere was 

The resul tant  
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Emittance -Measuring Procedure 

T o t a l  hemispherical emittance measurements were obtained in the following 

manner: 

cold w a l l  and the system evacuated t o  approximately ~ x L O - ~  t o r r .  

power was applied t o  the specimen heater and when thermal equilibrium w a s  

obtained between the specimen (at 100' C) and the liquid-nitrogen cooled 

enclosure, the current and voltage were recorded. 

t o  calculate the power input t o  the specimen and, in turn,  t o  determine the  

specimen emittance. 

F i r s t ,  the specimen and guard heater assembly was placed inside the  

Next, 

These measurements were used 

RESULTS AND DISCUSSION 

The r e su l t s  of t h i s  experimental program are presented in figures 1 

through 5 .  

It has been s ta ted that sputtering can roughen a surface and thereby 

change the opt ica l  or  radiative properties of that surface. This roughening 

i s  indicated in figure 1, which shows the surface f i n i s h  of copper and alumi- 

num specimens before and a f t e r  sputtering. 

the  electropolished surfaces i n  each case. 

faces as they appeared after being bombarded by 1021 ions/cm2. 

sputtering, the texture of the copper i s  much different  f romthat  of the 

aluminum surface. 

attacked by sputtering, causing large variations in the  height of each 

c rys ta l .  However, the  surface of each c rys t a l  is  re la t ive ly  f l a t .  

aluminum surface, there is  l i t t l e ,  if any, difference in crys ta l  height shown 

i n  the photomicrograph. The sputtering has, i n  t h i s  case, formed very small 

The before photomicrographs are f o r  

The a f t e r  pictures show tne  sur- 

After 

The copper grains o r  crystals  have been d i f fe ren t ia l ly  

For the  
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i r r egu la r i t i e s .  The changes in the op t i ca l  properites of the surfaces due 

t o  the formation of such irregularities w i l l  be shown i n  figures 2 through 5 .  

Abscrptance Changes 

Figure 2 shows the spec t ra l  absorptance of the aluminum specimen before 

and after sputtering. 

covers the  solar spectrum of in te res t .  

the  shape of the curve but did approximately double the absorptance at  each 

wave length. 

spectrum produces the solar absorptance f o r  each material tested. 

of ion bombardment t i m e  on solar absorptance w a s  then determined f o r  the 

three materials tes ted .  

The wave length i s  from 0.3 t o  3.0  microns, which 

Sputtering did not basical ly  a l t e r  

Integration of such spectral  absorptance curves over the solar  

The e f fec t  

The absorptance of these materials i s  presented in figure 3. The top 

curve represents the solar absorptance of t i tanium al loy as a function of 

number of bombarding ions. 

almost a constant value thereafter.  

approximately 15 percent. 

There is an i n i t i a l  change in absorptance, then 

The maximum increase i n  absorptance was 

The middle curve shows the data obtained on the pure copper spec-kii. 

The change in absorptance of t h i s  material  was very similar t o  t h a t  of the 

t i t a n i u m  a l loy .  It 

should be noted tha t ,  in both cases, t h i s  maximum resulted from small amounts 

of sputtering. 

The maximum increase i n  absorptance was also 15 percent. 

The lower curve shows the increase in absorptance f o r  the  pure aluminum 

specimen. 

increase in absorptance with increasing numbers of bombarding ions. 

of absorptance more than doubled, from approximately 0.10 t o  about 0.23, 

during the  experiment. 

After the initial sputtering period, there is an almost linear 

The value 

An interesting f a c t  is tha t  approximately 25 times as 
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9 much material  by weight was sputtered from the copper specimen than from the 

aluminum specimen. From t h i s  it can be seen that the  amount of material  

removed from a surface i s  not a valid c r i t e r ion  by which t o  estimate the change 

in  absorptance of t ha t  material. 

Ehittance Changes 

The t o t a l  hemispherical emittance of titanium, aluminum, and copper as 

a function of number of bombarding ions i s  presented i n  figure 4. 

curve shows the  emittance of the  titanium al loy specimen. 

t h a t  bombardment by 1021 ions/cm2 caused essent ia l ly  no change i n  emittance 

of t h i s  material. 

The top 

It can be seen 

The middle curve shows the change in  emittance f o r  pure aluminum. The 

emittance increased t o  a value about 60 percent greater than the emittance 

of the polished surface and then remained essent ia l ly  constant with increased 

sputtering. 

as a function of number of bombarding ions. 

tance increased by about 35 percent as a r e su l t  of sputtering. 

first 

the  rest of the t e s t .  

The lower c u e  shows the  emittance of the  pure copper specimen 

The data indicate t h a t  the emit- 

After the  

Ep&-ter- periefi, the  e ~ + , t a c e  r e m b e d  ecce2ltTalJ-J cncct&c7 t ~ p l & m l m t  

manges i n  U / S  Ratio 

From the data  of f igures  3 and 4, the  e f fec t  of sputtering on the 

r a t i o  of these materials c m  be shown. Figure 5 presents these resu l t s .  A s  

indicated, the r a t i o  may increase or decrease, depending upon the material. 

The greatest  change w a s  exhibited by the aluminum specimen which went from an 

a/€ 

a/€ 

of 3.20 t o  5.25, o r  a 65 percent increase. It should be noted tha t  f o r  
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the  other materials, the  maximum rate of change occurred during the i n i t i a l  

par t  of the t e s t .  

Bombardment Rates i n  the Space Environment 

The length of time f o r  a surface.to be bombarded by a specific number of 

Current estimates ions depends upon the ion f lux  density of i t s  environment. 

from reference 4 indicate tha t  the  proton f lux  in the spa t i a l  environment 

during a quiet sun period i s  about lo9 protons/cm2/sec. 

the  flux may increase by three orders of magnitude. 

During solar m a x i m a ,  

If a surface is  subjected t o  the spa t i a l  environment during solar maxima 

( 10l2 protons/cm2/sec), the f u l l  scale of the abscissa ( 1x1021 ions/cm2) in 

f igures  3,  4, and 5 corresponds t o  a time of about 30 years. 

assumed that the integrated e f fec t  of the solar  wind (protons plus other 

heavier ions) i s  equivalent t o  tha t  of the hydrogen plasma i n  t h i s  experiment, 

it appears that, for  a l l  materials tes ted,  times of about a year could cause 

the  signif  icant i n i t i a l  emittance and/or absorptance changes shown i n  figures 

3 through 5 .  

correspondingly longer. 

If it is  

For other than solar maxima conditions, t h i s  time would be 

If, on the  other hand, the environment has the much higher flux which 

might be encountered i n  an ion propulsion system, the  time required t o  

bombard a surface with 1021 ions/cm2 could be reduced t o  hours. 

mterial must be evaluated i n  i t s  par t icular  environment t o  determine 

whether the  emittance and/or absorptance and, hence, the  thermal energy 

balance of t ha t  surface w i l l  be s ignif icant ly  a l tered 

Thus, each 
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Te-rature Control 

The previous data have shown how the  a/€ r a t i o  changes as a r e su l t  

of ion bombardment. Figure 6 shows the relationship between the  a/€ r a t i o  

and the  equilibrium temperature of a spinning spherical s a t e l l i t e .  For t h i s  

calculation, it is  assumed that there is  no internal  power, Qi, generated 

within the vehicle so that the  surface temperature i s  a function of the 

a l e  

case was 1 astronomical un i t .  

hovever, it demnstrates  the magnitude of temperature var ia t ions which are 

possible. The dotted l ines  indicate the i n i t i a l  and f i n a l  a/€ r a t i o s  of 

aluminum and the  corresponding temperatures. 

372' K t o  423' K. 

tes ted,  the min imum corresponding temperature change was 11 K. These 

temperature variations could present a very serious problem i n  the case of 

temperature-sensitive components o r  experiments in a space vehicle. 

r a t i o  and the  distance of the vehicle from the sun, r, which f o r  t h i s  

This is  a grossly simplified calculation; 

The temperature increased from 

'phis is about a 50' K or  90' F increase. For the  materials 
0 

CONCLUDING RENARKS 

This investigation has shown that emittance, absorptance and a/€ r a t i o  

of the materials tes ted  are, in general, changed by ion bombardment. 

resul tant  temperature variations could, in so= applications, be a serious 

problem. The t i m e  period in  which significant changes would occur depends 

on the intensi ty  of proton bombardment i n  the space environment, which is  

not accurately known and i s  subject t o  wide variations.  Thus, the  time may 

vary from less than a year t o  30 years or  longer, depending on the  material 

and the environment assmd. 

The 
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This experimental program is  being continued t o  evaluate the e f fec t  of 

hydrogen ion bombarhnt  on the 

coatings of greater in te res t  as thermal control  surface materials for space 

vehicles . 

a/€ r a t i o  of t h i n  films and op t i ca l  
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FIGUFE TITLES 

Figure 1.- Photomicrographs of pure copper and pure aluminum specimens before 
and after sputtering. 

Figure 2.- Effect of hydrogen ion bombardment on the spectral  absorptance 
of pure aluminum. 

Figure 3 . -  Effect of hydrogen ion bombardment on solar absorptance of metals. 

Figure 4.- Effect of hydrogen ion bombardment on t o t a l  hemispherical emittance 
of aluminum, t i t a n i u m ,  and copper. 

Figure 5 -  - Effect of hydrogen ion bombardment on the  

Figure 6. - Effect of 

a/€ r a t i o  of metals. 

a/€ r a t i o  on the equilibrium temperature of a 
spherical satellite. 
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